Search for Half-Metallic Magnetic Materials: Double Perovskites

J. Goldberger, P. Santhosh, and P. Woodward (The Ohio State U.) Abstract No. gold1768 Beamline(s): X7A

Introduction: The perovskite structure class, one of the most commonly occurring in all of materials science, has the general formula ABX_3 , where A corresponds to a large electropositive cation, B represents a small transition metal, and X is generally an oxide or halide anion. Sr_2FeMoO_6 is an ordered double perovskite, with B-cations Fe^{3+} and Mo^{5+} (electron configurations $t_{2g}^{}e_g^{}$ and $t_{2g}^{}e_g^{}$, respectively), which undergoes a ferrimagnetic to metallic transition at approximately 420 K. Although these compounds are metallic, there is significant evidence that electron transport occurs via exchange of the Mo^{5+} d¹ electron. This transport is highly spin-polarized – the compound is only metallic when the conducting electron has an opposite spin than the Fe^{3+} d⁵ electrons. A large inter-grain boundary resistance exists which can be significantly diminished through application of a magnetic field, thus giving this compound its magnetoresistant property.

In this study, the structural, magnetic, and transport properties of several double-perovskites (specifically, Sr_2MnMoO_6 , Sr_2MnRuO_6 , Sr_2MnRuO_6 , Sr_2VMoO_6 and Ca_2VMoO_6) were studied, in order to achieve a better comprehension of the relative energy levels of the B cations and magnetoresistant properties of these materials. To explain why these compounds lack or portray magnetoresistant properties, we used variable temperature high-resolution synchrotron X-ray and neutron powder diffraction techniques, electrical transport, and magnetic susceptibility measurements. Variable temperature high-resolution synchrotron X-ray measurements were taken to determine the structure-property relationship of the phase transitions.

Methods and Materials: Polycrystalline samples were prepared in air from stoichiometric quantities of $CaCO_3$, $SrCO_3$, MoO_3 , V_2O_5 , La_2O_3 , and RuO_2 using conventional ceramic synthesis techniques. Initial annealing cycles were carried out in air in the $875-1100\,^{\circ}C$ range to decompose the carbonates. After a one hour purge, the molybdenum samples were heated in flowing H_2 (5%) / N_2 for 8-12 hours in the $1000-1250\,^{\circ}C$. The ruthenium samples were heated in air with final anneal temperatures in the range of $1300-1450\,^{\circ}C$. Magnetic susceptibility measurements were obtained using a SQUID magnetometer. Variable temperature high-resolution synchrotron X-ray measurements were taken at the X7A beamline. Electrical resistivities were measured on sintered pellets using a four-probe technique in the range 20-300K.